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Abstract
By using Monte Carlo simulation we investigate the structure of monolayer films formed on the
(100) plane of a face centered cubic crystal, being a lattice of square symmetry. It is
demonstrated that besides the commensurate c(2 × 2) phase, different incommensurate
structures develop. In particular, we concentrate on the formation of rather peculiar structure
which exhibits Archimedean tiling (AT) of type (32.4.3.4). The mechanism leading to the
formation of the AT phase is identified and it is shown that it develops via small displacements
of adatoms from registry positions. It is shown that the stability of the AT phase depends on the
misfit between the adsorbate and the surface lattice as well as on the properties of the surface
corrugation potential. The AT phase may be stable in the ground state or develop at finite
temperatures from the commensurate c(2 × 2) structure, via a sharp first-order phase transition.
The AT phase remains stable over a certain temperature range, and then it undergoes a transition
to either the partially ordered phase of square symmetry or the incommensurate floating phase
of triangular symmetry. In both cases a further increase of temperature leads to the formation of
a liquid-like phase.

1. Introduction

The monolayers of simple atomic adsorbates on crystalline
solids are known to form differently ordered phases [1–4].
The actual structure of the adsorbed film depends on several
parameters, such as the relative size of adsorbate atoms and the
surface lattice unit cell, the strength of the surface potential, its
corrugation and the symmetry of the surface lattice. Moreover,
the external thermodynamic conditions (the temperature and
the chemical potential) are of great importance and may
induce phase transitions between differently ordered phases.
In principle, the adsorbed phases can be grouped into the
following three classes: (i) commensurate, (ii) different high-
order commensurate and (iii) incommensurate phases [3, 4].
Park and Madden [5] proposed a simple geometric criterion
allowing one to distinguish different orderings in adsorbed
films. Namely, the unit lattice cell vectors of the adsorbate
phase, e1 and e2, are related to the unit lattice cell vectors of
the surface lattice, a1 and a2, by the following equation:[

e1

e2

]
=

[
α11 α21

α21 α22

] [
a1

a2

]
. (1)

The commensurate structures correspond to integer values
of the determinant det[αi j ]. The situations in which det[αi j ] is
a rational number correspond to the high-order commensurate
phases, with only a fraction of adatoms located directly over
the adsorption sites, i.e., over the minima of the adsorbate–
solid interaction potential. Of course, the surface potential
has the symmetry properties determined by the lattice structure
of the crystal surface. Several examples of such high-order
commensurate phases were observed in real systems [6–9].
Finally, whenever the determinant det[αi j ] is an irrational
number, the adsorbed phase is considered as incommensurate
with the substrate surface lattice. The criterion of Park and
Madden applies only to the so-called floating incommensurate
phases and fails to describe incommensurate phases of domain
wall structure [10]. In such cases the incommensurate phase
is composed of large commensurate domains separated by
walls which may have different structure, thickness, density
and orientation [10, 11]. Both the commensurate and the
high-order commensurate structures are periodic and have
the symmetry properties determined by the symmetry of the
underlying substrate surface lattice. On the other hand, the
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structure of floating incommensurate phases is dominated by
the interaction between adsorbed atoms and usually exhibits
triangular symmetry. Of course, the surface corrugation
potential introduces distortions to triangular ordering and often
leads to the well known effect of epitaxial rotation [12–14].
The rotation of the adsorbed layer lattice with respect to the
substrate lattice allows the system to reach a state of lower free
energy.

The results of Monte Carlo simulation reported in our
recent works [15, 16] have demonstrated that monolayer films
formed on a square lattice of sites can order into a rather exotic
phase in which every adatom has five nearest neighbors (see
figure 1). The appearance of decagons, like that shown in
figure 1, has led us to the conclusion that such monolayer
films can be treated as an example of a two-dimensional quasi-
crystal of decagonal ordering [17]. Shortly after our paper [16]
was published we realized, however, that this ordered phase
is periodic. This was also pointed out by Schmiedeberg
and Stark in their comments [18] on our work. They
have demonstrated that the structure obtained corresponds
to the tiling known as Archimedean tiling (AT) of type
(32.4.3.4) [19]. This type of tiling has been found in layered
crystalline structure of complex metallic alloys [20] known as
Frank–Kasper phases [21], supramolecular micellar complex
phases of organic dendrons [22], as well as in two-dimensional
three-component copolymers [23]. The formation of such
complex phases has never been observed experimentally as
well as in computer simulation studies of simple monolayer
films formed by atomic adsorbates.

The main objective of the present paper is to present the
mechanism leading to the formation of AT and to elucidate
the effects of periodic surface potential and misfit between
the adsorbate and surface lattice on the stability of AT. The
paper is organized as follows. In section 2 we present
the model and Monte Carlo simulation methods used in our
study. Then section 3 is devoted to the presentation of the
mechanism leading to the formation of AT phase and to the
discussion of the ground state behavior of the model. Then,
in section 4 we present and discuss the results of Monte
Carlo simulation carried out at finite temperatures. It is
demonstrated that besides the commensurate c(2 × 2) and
the AT phases, the adsorbed films can also form a floating
incommensurate phase of triangular symmetry. Therefore, we
also address the question of melting and disordering of the
such triangularly ordered incommensurate films subjected to
a corrugation potential of square symmetry.

2. The model and Monte Carlo methods

We consider a simple system of atoms interacting via the
truncated Lennard-Jones potential

u(r) =
{

4ε[(σ/r)12 − (σ/r)6] r � rmax

0 r > rmax
(2)

with rmax = 3σ , adsorbed on a model (100) plane of a face
centered cubic (fcc) crystal. The atoms of a fluid interact with
the substrate atoms via the Lennard-Jones potential as well.

Figure 1. A snapshot of a configuration recorded at T ∗ = 0.2 for the
monolayer film consisting of atoms of σ ∗ = 1.34 and the surface
potential characterized by the parameters ε∗

gs = 1.0 and Vb = 1.0.
The simulation cell of L = 20 was used. Crossing points of thin
vertical lines mark the locations of the centers of surface lattice cells
(surface potential minima) and the heavy solid lines show the
AT structure.

The substrate surface is a square lattice of sites, which are
separated by a finite potential barrier. Throughout this work
we take the length of the surface lattice constant a as a unit of
length and ε as a unit of energy.

The surface field is periodic in the directions parallel to the
surface (x and y), and hence can be represented by the Fourier
series [24]

v∗(z∗, τ ∗) = ε∗
gs

[
vo(z

∗)+ Vb

∑
g �=0

vg(z
∗) fg(τ

∗)
]
, (3)

where z∗ = z/a is the distance from the surface, τ ∗ = (x∗, y∗)
(x∗ = x/a and y∗ = y/a) is the 2D vector specifying the
position of an adatom over the surface lattice and the sum
runs over different (non-zero) reciprocal surface lattice vectors.
The Fourier coefficients vg(z∗) and the functions fg(τ

∗) are
given by analytic expressions [24]. The parameter Vb has been
introduced in order to allow for changes of the periodic part
of the surface potential [25]. As long as the parameter Vb

is equal to unity the Fourier series (3) gives the same results
as the direct summation of interactions between the adsorbate
atom and the atoms of the substrate, provided that a sufficient
number of terms in the sum over reciprocal lattice vectors have
been taken into account.

In the case considered here of the surface being the (100)
plane of an fcc crystal it is sufficient to use the first five non-
zero reciprocal lattice vectors in order to obtain a potential
of practically the same properties as the potential resulting
from a direct summation of atom–atom interactions. We have
considered several systems of adsorbate atoms characterized
by σ ∗ ranging between 1.26 and 1.47, and by the surface
potential with different values of ε∗

gs and Vb.
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The model has been studied by MC methods in the canon-
ical ensemble using the parallel tempering technique [26, 27],
which allows one to study a series of thermodynamic states,
i.e., of different temperatures, in a single run. The method
is very efficient and considerably reduces the number of
MC steps needed to reach equilibrium, as well as to obtain
reliable estimations of averages. A single MC step (MCS)
consisted of N (N being the number of particles in the
system) randomly chosen displacements of particles. The
maximum displacement was adjusted during the run to keep
the acceptance ratio at about 40%). The number of MCSs
performed during a single run varied between 105 and 106

and a similar number of MCSs was used to equilibrate the
system. Standard periodic boundary conditions were applied in
the directions parallel to the surface and a hard reflecting wall
placed at z∗ = 20 was used to close the system from above. To
facilitate finite size scaling analysis we have used simulation
cells of the size L ×L ×20, with L ranging between 12 and 60.

All canonical ensemble Monte Carlo simulations were
performed for the fixed density of adsorbed film corresponding
to a perfect commensurate c(2 × 2) structure in which half of
all potential minima is occupied by adsorbate atoms. i.e., it was
equal to 0.5 in the case of monolayer films. Of course, for large
values of σ ∗ the stability of the commensurate c(2 × 2) phase
is rather limited, since the adatom–adatom interaction becomes
repulsive. Only when the surface potential is sufficiently strong
and strongly corrugated it is possible to enforce the formation
of the commensurate c(2 × 2) phase.

In some cases we have also used Monte Carlo methods
in the grand canonical ensemble in order to determine
adsorption–desorption isotherms, as well as to check whether
it is possible to obtain AT phase when the dilute gas-like phase
condenses into a dense monolayer film.

The internal structure of adsorbed films has been
probed by the calculation of the bond-orientational order
parameters [4, 28]

�k =
〈∣∣∣∣∣

1

Nb

∑
i∈l

∑
j∈l

exp[ikφi j]
∣∣∣∣∣
〉
, k = 4, 6, 12, (4)

that are suitable for detecting the formation of layers of square
(k = 4) and hexagonal (k = 6) symmetry as well as the
appearance of AT phase (k = 12). In the above equation, φi j

is the angle between the ‘bond’ joining the nearest neighboring
atoms i and j in the monolayer and the fixed reference axis, Nb

is the number of such ‘bonds’, and 〈· · ·〉 means the averaging
over the configurations generated during a MC run. The first-
nearest neighbors of each adatom have been determined using
the in-plane cutoff, defined as the location of the first minimum
of the radial distribution function [29], while the extent of the
first layer in the z direction has been determined using the
density profiles.

In the case of a perfectly ordered AT phase the bond-
orientational order parameter�12 is equal to unity,�4 assumes
low values, while �6 = 0. When a perfectly ordered
commensurate c(2 × 2) phase is formed, both �4 and �12

are equal to unity, while �6 = 0 again. Only in the case
of a floating incommensurate phase of triangular symmetry is

the bond-orientational order parameter �6 expected to reach
values close to unity.

We have also monitored the Fourier transform of the local
density in the monolayer film

|ρq | =
〈∣∣∣∣∣

1

Nl

Nl∑
i=1

exp(−iq · ri )

∣∣∣∣∣
〉
, (5)

which allows us to probe the positional order corresponding
to the presence of the assumed commensurate phase,
characterized by the reciprocal lattice vector q [30, 31]. We
have also calculated the susceptibilities (χop = NkT [〈op〉2 −
〈op2〉]) as well as the fourth-order ‘Binder’ cumulants [32]
(UL = 1 − 〈op〉4/3〈op2〉2) conjugated to the above defined
order parameters (op = �k or |ρq |).

3. The formation of AT phase and the ground state
properties of the model

From the snapshot shown in figure 1 it is evident that
the development of AT phase results from rather small
displacements of adsorbed atoms from registry positions.
In order to obtain quantitative information about these
displacements we have recorded the density distribution
function, ρ(τ̂ ∗

), mapped onto a single lattice cell (τ̂ ∗ =
τ ∗−int(τ ∗)), for different systems which exhibit the formation
of AT phase. Figure 2 presents representative examples
obtained for adatoms of σ ∗ = 1.34 and the surface potential
characterized by ε∗

gs = 1.0 and Vb = 1.0, recorded at
T ∗ = 0.20 for two different sizes of the simulation cell
L = 40 (part (a)) and L = 30 (part (b)). One readily notes
that the density distribution possesses four maxima, at the
positions (0.5±δ, 0.5) and (0.5, 0.5±δ), with δ being roughly
the same for the displacements along the two surface lattice
symmetry axes (x and y). Comparing the density distributions
in parts (a) and (b) of figure 2 one also notes that the peaks
at the density distribution obtained for L = 40 are much
sharper than those obtained for L = 30. From the inspection
of density distribution functions obtained for different systems
and different sizes of the simulation cell it follows that
whenever the linear dimension of the simulation cell (L) is
an integer multiple of 4 (L = 16, 20, 24, . . .) the density
distribution function looks like that depicted in figure 2(a),
while for L = 18, 22, 26, . . . the density distributions look
like that given figure 2(b). Of course, the linear dimension
of the system has to be an even number to accommodate
the commensurate c(2 × 2) structure in the simulation cell
with periodic boundary conditions applied in both x and y
directions.

Both, the inspection of snapshots and the above presented
behavior of density distribution functions allow us to propose
a mechanism leading to the development of AT phase, in
which every adatom has five nearest neighbors. In an idealized
situation, when the displacement of adatoms from registry
positions leads to the structure in which all five nearest
neighbors are at the same distance from the central atom,
the pattern corresponding to a perfect AT is formed (see
figure 3(a)). In order to transform the commensurate c(2 × 2)

3
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Figure 2. Contour maps of the density distribution functions ρ(τ̂ ∗
),

obtained at T ∗ = 0.2 for the monolayer film consisting of atoms of
σ ∗ = 1.34 and the surface potential characterized by the parameters
ε∗

gs = 1.0 and Vb = 1.0. Parts (a) and (b) correspond to L = 40
and 30, respectively.

structure of square symmetry into a perfect AT structure, one
needs to consider a block of the size (4 × 4), i.e., consisting
of 16 surface unit cells, and displace each atom by one of the
vectors (±δo, 0) or (0,±δo) in a manner shown in figure 3(b).
The length of the displacement vector, δo, can be readily
obtained from a simple geometry and it is equal to δo =
(
√

3 − 1)/(
√

3 + 1) ≈ 0.2679, while the distance between
the nearest neighbors is equal to rnn = 4/(

√
3 + 1) ≈ 1.464.

The construction given in figure 3(b) explains the observed
differences in behavior of density distribution functions shown
in figure 2 for the systems of linear dimension L = 4k and
L = 4k + 2 (k being a positive integer). Only in the case

Figure 3. Part (a) shows a perfect AT. Part (b) represents a basic
4 × 4 unit lattice cell allowing us to construct AT on the lattice. The
arrows show the displacement vectors applied to all atoms. Dotted
and dashed lines represent the nearest neighbor distances in the
commensurate and decagonally ordered phases, respectively.

of L = 4k do the periodic conditions correctly match the
periodicity of AT structure.

The results of Monte Carlo simulations performed for
different systems have demonstrated that the lengths of
displacement vectors are different (smaller) than δo, so that
the AT ordering is never exactly the same as that shown in
figure 3(a). This observation can be explained by considering
the ground state behavior of our model.

In the case of a perfectly ordered commensurate c(2 × 2)
phase the potential energy (per atom) can be readily calculated
and it is equal to

Ec = 0.5
∑

l

nlu(r
∗
l )+ v(τ ∗

S, z∗
min,S), (6)

where nl is the number of neighbors in the lth shell, located
at the distance r∗

l from the central atom, v(τ ∗
S, z∗

min,S) is the
minimum value of the surface potential exactly over the center
of a lattice unit cell (τ ∗

S = (0.5, 0.5)) and z∗
min,S is the location

of the surface potential minimum with respect to the distance
from the surface over the center of a lattice unit cell. In a
similar fashion, one can calculate the potential energy (per
atom) of the structure in which all atoms are displaced from

4
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Figure 4. The difference
Emin(δ) = EAT(δ)− Ec versus δ for a
series of systems characterized by different σ ∗ (shown in the figure)
and the surface potential with ε∗

gs = 1.0 and Vb = 1.0.

registry positions by the vectors (±δ, 0) and (0,±δ), for any
δ � δo, and we have

EAT(δ) = 0.5
∑

l

nl u[r∗
l (δ)] + v[τ ∗(δ), z∗

min,δ]. (7)

In the above z∗
min,δ denotes the distance from the surface at

which the surface potential reaches minimum for a given value
of δ. Of course, as soon as the displacement δ is greater than
zero the numbers of neighbors at different coordination shells
(the numbers (nl )) are different than for the commensurate
phase. In fact, for any 0 < δ � δo the central atom has five
first-nearest neighbors: four at the distance

√
2(1 + δ2) and

one at the distance 2(1 − δ).
In the ground state, a stable structure is that of the lowest

energy. Figure 4 presents examples of plots of the difference

Emin(δ) = EAT(δ) − Ec versus δ, obtained for a series of
systems of different σ ∗ and characterized by the same values of
ε∗

gs = 1.0 and Vb = 1.0. The results show that the systems with
σ ∗ = 1.34, 1.35 and 1.36 are not likely to form the AT in the
ground state. On the other hand, as soon as σ ∗ exceeds 1.36 the
absolute minimum of the energy corresponds to the AT phase,
though it is not perfectly ordered since the energy reaches its
minimum value for δ < δo. The results given in figure 4
are quite consistent with our simulation results that will be
discussed in section 4.

In figure 5 we present the plots of the bond-orientational
order parameters �4, �12 and of the order parameter |ρq |
versus the length of the displacement vector δ in the ground
state. The bond-orientational order parameter �12 = 1.0 for
perfectly ordered commensurate and AT phases, �4 is equal to
unity only for δ = 0, i.e., for a perfect commensurate phase,
while the bond-orientational order parameter �6 is equal to
zero for any δ.

When the surface corrugation becomes weak enough the
adsorbed film may also order into the triangularly ordered

Figure 5. The order parameters�4, �12 and |ρq | plotted against the
displacement δ in the ground state.

floating incommensurate phase, as was already observed in
monolayers formed on square substrates [33]. Although the
calculation of the potential energy of triangularly ordered
phase formed over a square lattice of sites is a nontrivial
problem, nevertheless we can obtain a rough estimate by
considering an idealized situation. Namely, we assume that
the film forms a perfect triangular lattice floating above the
substrate surface. Under such conditions, we can assume that,
on average, the surface field felt by an adatom is equal to the
surface potential averaged over the entire surface, i.e., it is
equal to ε∗

gsv
∗
o(z

∗) (cf equation (3)), so that the total potential
energy (per atom) is equal to

ETR = 0.5
∑

l

nlu(r
∗
l )+ ε∗

gsvo(z
∗) (8)

where the sum runs over all shells of neighbors of a perfect
triangular lattice. In order to obtain the distances rl one needs
to minimize the fluid–fluid interaction energy with respect to
the first-nearest neighbor distance only [4].

The above procedure does not lead to an exact solution
of the problem, since the triangular ordering may be, and
usually is, distorted by the corrugation potential. Besides,
the density of a perfect triangular phase is different from the
densities of both the commensurate c(2×2) and the AT ordered
phases. When the canonical ensemble Monte Carlo simulation
is performed for the system of density equal to the density of
the commensurate phase different situations may emerge. For
small adsorbate atoms, voids are expected to appear as soon
as the triangular ordering sets in. On the other hand, when
adatoms are sufficiently large the promotion of the second
layer is likely to accompany the formation of incommensurate
phase of triangular symmetry. The first situation is illustrated
by the snapshot given in figure 6, obtained for adatoms of
σ ∗ = 1.27. This figure also shows that the triangular phase
is rotated with respect to the symmetry axes of the surface
lattice. Our simple model ground state calculations do not

5
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Figure 6. A snapshot recorded for the system with σ ∗ = 1.27,
ε∗

gs = 1.0 and Vb = 0.5 at T ∗ = 0.002.

involve the effects due to epitaxial rotation. Having all the
above mentioned shortcomings in mind we can nevertheless
evaluate the energy of the triangular phase and obtain a rough
estimation of its stability region. In all cases shown in figure 4
the difference ETR − Ec is greater than zero and hence an
incommensurate phase of triangular ordering is not expected
to appear at T = 0.

We have carried out the ground state calculations for
several systems and our primary aim was to estimate the

interval of σ ∗ over which the AT ordering can appear at T =
0. From the results obtained it follows that the AT phase is
possible at T = 0 only for adatoms of σ ∗ ∈ [1.29, 1.44].
Figure 7 presents representative examples of the ground state
calculations for the systems with σ ∗ = 1.28, 1.29, 1.44
and 1.45. This figure also shows that in all cases the energy of
AT phase reaches a minimum for the displacement (δ) smaller
that δo, in agreement with Monte Carlo simulation results.

Since the development of AT phase occurs via relatively
small displacements of adatoms from the centers of surface
unit cells, the height of the potential barrier between adjacent
minima V ∗

D = v(z∗
SP, τ

∗
SP) − v(z∗

S, τ
∗
S), where SP denotes

the saddle point position, is not likely to be the parameter
controlling the ability of atoms to displace from registry
positions. It is rather controlled by the curvature of the
surface potential near the minimum. Since the adatom
displacements occur along the symmetry axes of the surface
lattice, one can characterize the curvature of the surface
potential by considering a simple one-dimensional situation
and approximate the surface potential by the harmonic
potential

v∗
har(x

∗) = v∗
min + kx(x

∗ − 0.5)2 (9)

where kx is the force constant given by

kx = 1

2

[
∂2v∗(z∗, x∗, y∗)

∂x∗2

]
z∗=z∗

S,τ
∗
S

. (10)

Of course, the displacement along the y axis leads to the
same result due to the symmetry of the surface lattice. The
second derivative of the surface potential with respect to x∗
can be readily obtained from the known functions fg(τ

∗) (see

Figure 7. The results of ground state calculations for the systems characterized by σ ∗ = 1.28 (part (a)), 1.29 (part (b)), 1.44 (part (c)) and
1.45 (part (d)). The applied values of ε∗

gs and Vb are shown in the figure. Dashed horizontal lines decorated with symbols correspond to the
energy difference between the triangularly ordered and the commensurate phases.

6
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equation (3)). The force constant kx is a direct measure of
the curvature of the surface potential near the minimum. It
should be noted that the force constant kx is proportional to the
product ε∗

gsVb, and hence it is also proportional to the potential
barrier for diffusion (V ∗

D). Of course, kx also depends on the
size of adsorbate atoms and decreases with σ ∗. For example,
assuming that ε∗

gs = 1.0 and Vb = 1.0, we obtain kx ≈ 8.546
for σ ∗ = 1.26 and kx ≈ 7.193 for σ ∗ = 1.46. Of course,
the potential barrier for diffusion also decreases with σ ∗ and
we have V ∗

D ≈ 1.212 for σ ∗ = 1.26 and V ∗
D ≈ 1.039 for

σ ∗ = 1.46.
The displacement of adatoms along the x axis, as well as

along the y axis, is also accompanied by change of the distance
from the surface. Therefore, also the curvature of the surface
potential along the z axis, measured by the force constant kz ,

kz = 1

2

[
∂2v∗(z∗, x∗, y∗)

∂z∗2

]
z∗=z∗

S,τ
∗
S

, (11)

is of importance. The force constant kz is given by

kz = ε∗
gs

{
1

2

[
∂2v∗

o(z
∗)

∂z∗2

]
z∗=z∗

S

+ Vb

∑
g

(
1

2

[
∂2v∗

g(z
∗)

∂z∗2

]
z∗=z∗

S

fg(τ
∗
S)

)}
(12)

and contains the term proportional to ε∗
gs and the term

proportional to the product ε∗
gsVb. It appears, however, that the

periodic part of the surface potential has only a small effect on
kz . In fact the force constant kz changes by less than 5% when
the corrugation parameter changes between zero and unity (see
figure 8).

In the following section we shall demonstrate that the two
curvatures, kx and kz , have a great influence on the structure of
adsorbed films and, in particular, on the formation and stability
of the phase which exhibits the AT ordering.

4. Results of finite temperature Monte Carlo
simulation and discussion

It was demonstrated in [16] that in the systems ordering into
the commensurate c(2 × 2) phase at T = 0, the AT phase
can nevertheless appear at finite temperatures, via the first-
order phase transition. At finite temperatures, the system free
energy strongly depends on the entropy and hence the AT phase
may be stabilized by this entropic contribution. Therefore,
we have checked whether the AT phase can develop at finite
temperatures in the systems of adatoms of σ ∗ < 1.29, and
considered two series of systems with σ ∗ = 1.27 and 1.28.

From the ground state calculations for the systems with
σ ∗ = 1.27, ε∗

gs = 1.0 and different values of the corrugation
parameter, Vb, it follows that monolayer films of triangular
ordering are stable whenever Vb is lower than about 0.665.
Monte Carlo calculations performed at finite temperatures
have confirmed this prediction very well. In particular, the
annealing runs with the starting configuration corresponding
to a perfect commensurate film and the corrugation parameter
equal to and lower than Vb = 0.65 have been found to lead to

Figure 8. The force constant kz versus the corrugation parameter Vb

for a series of systems with ε∗
gs = 1.0, V − B = 1.0 and different σ ∗

(shown in the figure).

the formation of triangularly ordered structures at sufficiently
high temperatures (cf figure 6). Subsequent freezing runs
have always demonstrated that triangularly ordered structure
remains stable even at very low temperatures, in agreement
with the results of ground state calculations, and demonstrated
that the commensurate phase, used as a starting configuration,
is not a stable state. On the other hand, both annealing and
freezing runs performed for the systems with Vb � 0.675 led to
the recovery of the commensurate phase at low temperatures.
This is demonstrated in figure 9, which presents the changes
of the bond-orientational order parameters �4 and �6 with
temperature for a series of systems characterized by different
values of the corrugation parameter. The freezing runs have
always shown the formation of triangularly ordered phase at
low temperatures. We have also checked that the potential
energy of the film reaches lower values for the triangularly
ordered phase at the temperatures approaching zero.

The systems with Vb � 0.7 do not show the formation of
AT phase at all. The changes of the bond-orientational order
parameters shown in figure 9 suggest that the formation of
AT phase may be possible for the system with Vb = 0.675.
Indeed, a direct inspection of snapshots recorded for systems
of different size of the simulation cell, with L = 32 and 40,
has demonstrated that the AT develops (see figure 10).

The development of AT phase was not observed when
the same system was studied by grand canonical Monte
Carlo simulation. For example at the temperature of 0.3
we have observed the formation of ‘mixed structures’,
consisting of commensurate domains of square ordering and
incommensurate domains of triangular ordering. An increase
of temperature to 0.4 has led to the formation of quite well
developed triangular order in the film. Thus, we should
conclude that the AT phase is not a stable state for this system.

A further increase of Vb to 0.7 also leads to small
displacements of adatoms, but neither the density distributions
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Figure 9. Temperature changes of the bond-orientational order parameters�4 (left panel) and �6 (right panel) for the systems characterized
by σ ∗ = 1.27, ε∗

gs = 1.0 and different values of the corrugation parameter (shown in the figure). Vertical dashed lines mark the jumps of order
parameters during the annealing runs for the systems with Vb � 0.65.

Figure 10. A snapshot of configuration recorded at T ∗ = 0.128 for
the monolayer film consisting of atoms of σ ∗ = 1.27 and the surface
potential characterized by the parameters ε∗

gs = 1.0 and Vb = 0.675.
The simulation cell of L = 40 was used. Crossing points of thin
vertical lines mark the locations of the centers of surface lattice cells
(surface potential minima) and the heavy solid lines show that
adatoms have five nearest neighbors and the distorted AT structure.

nor the snapshots allow us to conclude that the AT appears. Of
course, the AT ordering does not appear for still higher values
of Vb.

The formation of well developed triangular ordering in the
systems with σ ∗ = 1.27 and low values of the corrugation
parameter allow us to address the problem of the nature of
the melting transition of triangular incommensurate pseudo-
two-dimensional phase subjected to an external field of square
symmetry. From the Nelson–Halperin renormalization group
calculations [34] it follows that in strictly two-dimensional
systems the melting transition should occur via two second-
order phase transitions. The first transition, leading to the

disappearance of quasi-long-range positional order, is due to
unbinding of pairs of dislocations [35], but the system is
expected to retain quasi-long-range orientational order. Then
the second transition, at a higher temperature, is expected to
take place, and in the particular case of a substrate of square
lattice symmetry it is predicted to be an Ising-like transition.
The substrate field then presents a 12-fold symmetric potential,
which acts like an Ising perturbation on the bond-orientational
order parameter �6. At the temperatures above the transition
point the bond-orientational order parameter �6 is expected to
approach zero.

In order to investigate the melting of such triangular
incommensurate solid-like phases we have considered the
system characterized by ε∗

gs = 1.0 and Vb = 0.5 and
performed the canonical as well as grand canonical ensemble
simulations for different sizes of the simulation cell, L, ranging
between 20 and 60. The results obtained from the canonical
ensemble simulation, carried out at the density corresponding
to a perfect commensurate c(2 × 2) phase (ρ = 0.5), quite
clearly demonstrate that there are two phase transitions present
(see figure 11). The first transition, which takes place at the
temperature of about 0.38 is manifested by the presence of
a very sharp specific heat maximum of the height depending
on the simulation cell size (see figure 11(a)). It is also
accompanied by a small drop of the bond-orientational order
parameter �6 (figure 11(b)) and by a weak anomaly of its
susceptibility (figure 11(c)). This anomaly becomes visible
only for sufficiently large systems of L � 40. The presence
of a pronounced specific heat anomaly does not contradict the
defect mediated melting theory. This theory predicts only that
the heat capacity does not diverge at the melting point. On the
other hand, the theory does not say anything about the width
or height of the heat capacity peak at the melting temperature.
Unfortunately, the quality of our heat capacity data is not good
enough to apply finite size scaling and decide whether the
specific heat peak diverges upon the increase of the simulation
cell or not.

The defect mediated melting theory is expected to be valid
for strictly two-dimensional systems, while our system is not
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Figure 11. The plots of specific heat (part (a)), bond-orientational order parameter�6 (part (b)), its susceptibility (part (c)) and fourth-order
cumulants (part (d)) versus temperature, for the system with σ ∗ = 1.27, ε∗

gs = 1.0 and Vb = 0.5 and for different sizes of the simulation cell
(shown in part (b)). The inset to part (c) shows the log–log plot of the bond-orientational order parameter susceptibility maximum versus the
simulation cell size.

strictly two-dimensional. The adsorbed atoms are allowed to
displace in the direction normal to the surface, and this may
lead to important changes in the mechanism of the melting
transition. In particular, even small vertical displacements of
adatoms mean that the system may be considered as effectively
three-dimensional. As a consequence, the melting may be
a first-order rather than a continuous transition. The above
statement is supported by the local density profiles recorded
at the temperatures below and above the melting point, which
have demonstrated that out-of-plane motion of adatoms leads
to a slight broadening of the profiles upon melting. It should be
emphasized that we have not observed any traces of the second-
layer promotion at the temperatures just above the melting
point.

It is also possible that the observed sharp heat capacity
peaks mark the triple-point melting. The snapshot shown in
figure 12(a), which was recorded at the temperature below
the melting point, is characteristic for a two-phase region.
A dense solid phase coexists with a very dilute gas phase,
represented by a void. Upon melting, the system is likely
to enter the region in which a solid phase coexists with
a liquid (see figure 12(b)). The presence of hexagonally
ordered solid regions may be responsible for large values of
the bond-orientational order parameter �6 above the melting
temperature. The above scenario is consistent with the
prediction that melting occurs via a first-order transition. One
should note that our simulations were carried out at constant
density, and distinguishing a coexistence region from a hexatic
phase is a difficult task. One possibility would be to record

the orientational correlation function (g6(r) = 〈�6(r)�6(0)〉)
and check whether it exhibits algebraic decay, as predicted for
hexatic phase. In order to obtain reliable results one would
need to perform simulations for systems still larger than those
considered here.

The inspection of snapshots (figures 12(a) and (b)) and
radial distribution functions (figure 13) at the temperatures
below and above the melting point demonstrated that the
system exhibits hexagonal ordering, below as well as above
the melting transition, in agreement with the behavior of the
bond-orientational order parameter �6.

The second transition, which occurs at the temperature of
about 0.435, appears to be a continuous transition belonging
to the universality class of the two-dimensional Ising model.
In particular, the log–log plot of the maximum value of the
susceptibility χ�6,max versus L is linear with a slope equal to
about 1.75 and the fixed point of the fourth-order cumulant
of �6 occurs at about 0.62. These two values are in a good
agreement with the values predicted for the two-dimensional
Ising model (γ /ν = 1.75 and U ∗ = 0.613) [36].

The presence of the Ising-like transition supports the
view that the mechanism of melting is consistent with the
theory of Nelson and Halperin [34]. Here we should recall
the results of our earlier Monte Carlo study of strictly two-
dimensional Lennard-Jones fluid in an external field of square
symmetry [37]. For a weakly corrugated surface potential
the melting behavior was found to be qualitatively the same
as observed here, demonstrating that the above mentioned
deviations of monolayer films from planarity do not contribute
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(a) (b)

(c)

Figure 12. Snapshots of configurations for the system with σ ∗ = 1.27, ε∗
gs = 1.0 and Vb = 0.5 and L = 40 recorded at the temperatures

T ∗ = 0.34 (part (a)), 0.385 (part (b)) and 0.46 (part (c)).

much to the mechanism of melting. The above seems to
support the view that the melting transition occurs according to
the mechanism predicted by Nelson and Halperin. Of course,
we can not exclude the possibility that melting occurs via a
first-order transition.

The results obtained using the grand canonical ensemble
simulation are consistent with the presence of two different
condensed phases of high degree of triangular ordering.
The adsorption–desorption isotherms obtained at different
temperatures and for the simulation cell of L = 28 (see
figure 14) demonstrate that at the temperature of 0.3 the
condensation of the dilute gas phase (G) leads directly to the
quite well ordered incommensurate floating phase of triangular
order (IC2). At T = 0.35, we already observe the presence of
two different condensed phases (IC1 and IC2), both exhibiting
quite a high degree of triangular ordering. This transition is
also present at still higher temperatures, but at T ∗ � 0.4 we
also find a disordered liquid-like phase (DL).

From the isotherms we have constructed the phase
diagram, shown in the inset to figure 14. It is evident that there
are two triple points present. The first triple point, located at
the temperature of about 0.31, corresponds to the coexistence

between the two incommensurate phases, IC1 and IC2, and
the dilute gas phase. At the second triple point, located at
T ∗ ≈ 0.395, the incommensurate phase IC1, the disordered
liquid phase (DL) and the gas phase (G) coexist. The results
obtained suggest that the lines corresponding to the phase
transitions between the disordered liquid and IC1 phases and
between the two incommensurate phases IC1 and IC2 meet
at a temperature just below 0.5. The isotherms recorded at
the temperatures 0.48 and 0.49 have shown that the phase
transition between the disordered liquid and the IC1 phases
is continuous, while a discontinuous transition occurs at the
temperature of 0.45. Therefore, a tricritical point is expected
to exist at a certain temperature between 0.45 and 0.48.

In the case of slightly larger adsorbate atoms of σ ∗ =
1.28, the ground state calculations also do not predict the
formation of AT. Although one can find the parameters ε∗

gs
and Vb for which the AT phase has lower energy than
the commensurate phase (see figure 7(a)), nevertheless the
incommensurate floating phase of triangular symmetry has an
energy still lower than the AT phase one. However, a stable
AT ordered phase has been found at non-zero temperatures for
the systems characterized by ε∗

gs = 1.5 and the corrugation
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Figure 13. Radial distribution functions for the system with
σ ∗ = 1.27, ε∗

gs = 1.0 and Vb = 0.5 and L = 40 recorded at different
temperatures (shown in the figure). Note that the plots are shifted for
clarity.

parameter Vb = 0.5 and 0.55. For Vb = 0.45 the
system exhibits triangular order, while for Vb = 0.6 only
the commensurate phase appears. This was demonstrated by
the behavior of the order parameters, the radial distribution
functions, as well as from the inspection of snapshots.

For σ ∗ between 1.29 and 1.44, the AT phase is predicted
to be stable already at zero temperature when the strength of
surface potential and its corrugation are both suitably chosen
(cf figure 7). The results of ground state calculations for the
systems characterized by σ ∗ = 1.29, ε∗

gs = 1.50 and different
values of the corrugation parameter Vb have shown (see
figure 7(b)) that the AT should be stable at zero temperature
over a narrow range of Vb between about 0.475 and 0.485.
Finite temperature canonical ensemble Monte Carlo simulation
performed at the density ρ = 0.5 have demonstrated, however,
that the AT phase remains stable at still lower values of Vb

equal to 0.46 and 0.44, indicating again that our ground state
calculations for the triangularly ordered phase overestimate its
stability. This can be attributed to the fact that the density
considered is lower than the density of fully filled triangular
phase. On the other hand, grand canonical simulations carried
out for Vb = 0.46 have demonstrated that only the phase
of triangular order is stable at sufficiently low temperatures,
confirming the predictions stemming from the ground state
calculations.

Now, we shall consider a series of systems with σ ∗ =
1.30 and address the problem of the influence of the surface
potential curvatures (kx and kz) on the stability of AT phase.
We have chosen a series of systems (see table 1) for which
the commensurate phase is stable at zero temperature, but the
AT phase develops at finite temperatures. The systems 1–
4 from table 1 are characterized by roughly the same
potential barrier for diffusion (V ∗

D ≈ 0.76) and by different
curvatures of the surface potential kx and kz . Figure 15

Figure 14. The adsorption–desorption isotherms for the system with
σ ∗ = 1.27, ε∗

gs = 1.0 and Vb = 0.5 and L = 40 recorded at different
temperatures: T ∗ = 0.30 (open circles), 0.35 (filled circles), 0.40
(open squares), 0.45 (filled squares) and 0.5 (filled diamonds). The
values of the bond-orientational order parameter �6 at selected
values of the chemical potential correspond to different condensed
phases. The inset shows the phase diagram, in the μ∗–T ∗ plane,
for the same system.

Table 1. The parameters characterizing the systems with σ ∗ = 1.30.

No. ε∗
gs Vb V ∗

D kx kz

1 1.55 0.60 0.763 8.217 155.0
2 1.00 0.80 0.767 9.239 100.6
3 3.10 0.35 0.760 7.478 306.1
4 0.65 1.00 0.765 10.83 64.1
5 0.55 1.00 0.647 9.167 54.3
6 3.20 0.40 0.922 9.159 317.1
7 2.35 0.50 0.901 9.289 234.0
8 1.50 0.65 0.826 9.159 150.5

presents the temperature changes of the bond-orientational
order parameters �4 (part (a)) and�12 (part (b)) of the specific
heat (part (c)) and of the order parameter |ρq | (part (d))
for these four systems. Two important features are clearly
seen. The temperature at which the commensurate phase
transforms into the AT phase increases nearly linearly with kx

(see figure 16(a)). It should be noted that the magnitude of kz

changes in a reverse order to kx for the systems considered,
so that one might conclude that the temperature at which the
transition between c(2×2) and AT phases takes place decreases
when kz becomes higher. This is not likely to be the case, as
will be demonstrated soon.

On the other hand, the temperature at which the AT
disorders is primarily determined by the magnitude of kz , and
increases with kz (see figure 16(a)). It should be also noted that
the disordering temperature of the AT phase for the systems 2,
5–8, for which the magnitude of kx is nearly the same, changes
with kz in a similar way (see figure 16(b)). Of course, the
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Figure 15. The plots of the bond-orientational order parameters ψ4 (part (a)) and �12 (part (b)) of the specific heat (part (c)) and the order
parameter |ρq | (part (d)) versus temperature for the systems 1, 2, 3 and 4 from table 1.

Figure 16. Part (a) shows the changes of the temperatures of the phase transition between the commensurate c(2 × 2) and AT phases versus
the surface potential curvature kx (open circles) and of the temperatures of the phase transition between the AT and disordered phases versus
the surface potential curvature kz (filled circles) for the systems 1, 2, 3 and 4 from table 1. Part (b) is the plot of the temperatures of the phase
transition between the AT and disordered phases versus the surface potential curvature kz for the systems 2, 5, 6, 7 and 8 from table 1.

magnitude of the curvature kz also influences the transition
between the commensurate phase and the AT phase, but not
in a way suggested by the results obtained for systems 1–
4. One expects that the stability of the commensurate phase
should be enhanced by higher values of kz , due to a decreased
ability of out-of-plane displacement of adatoms from the
registry positions. Indeed, our Monte Carlo calculations
performed for the systems 2, 5–8 from table 1 confirm that
prediction quite well. Figure 17 presents the plots of the bond-
orientational order parameters �4 and �12 versus temperature,

which demonstrate that the temperature at which the transition
between the commensurate c(2×2) structure and the AT phase
takes place is shifted towards higher temperatures when kz

increases. This figure also shows that the potential barrier for
diffusion considerably influences the behavior of the film. The
systems 2 and 5, which are characterized by lower potential
barriers for diffusion than the systems 6, 7 and 8, exhibit the
formation of AT phase, while the systems 6 and 7 with the
two highest values of the potential barrier do not exhibit the
formation of AT. The system 8, with the intermediate values of
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Figure 17. The plots of the bond-orientational order parameters ψ4 (part (a)) and �12 (part (b)) of the specific heat (part (c)) and the order
parameter |ρq | (part (d)) versus temperature for the systems 2, 5, 6, 7 and 8 from table 1.

both kz and V ∗
D, orders into the AT at the temperatures between

about 0.19 and 0.54. The density distribution functions as well
as the snapshots for the systems 6 and 7 have not shown the
development of AT phase at all.

The behavior of systems with σ ∗ up to 1.44 is qualitatively
similar to the above discussed cases and the AT appears at
the ground state or at finite temperatures, depending on the
surface potential properties. Figure 18 presents a sort of phase
diagram, which shows the temperature regions over which
different condensed phases are stable plotted versus the surface
potential curvature kx , for a series of systems of adsorbate
atoms with σ ∗ = 1.34 and the surface potential characterized
by Vb = 1.0 and by different strength (ε∗

gs). Of course, the
surface potential curvatures, kx and kz , are both proportional to
the surface potential strength (kx = 16.226ε∗

gs and kz ≈ 98ε∗
gs).

The results obtained demonstrate that the disordering of the
AT phase occurs via a first-order phase transition, no matter
whether it leads to the formation of the ordered fluid-like (OF)
phase of square symmetry or to the floating incommensurate
phase of triangular symmetry (HEX).

Finite temperature simulations performed for a series of
systems characterized by the same values of ε∗

gs = 1.0 and
Vb = 1.0 but with different σ ∗ between 1.33 and 1.38 have
confirmed the ground state prediction that for σ ∗ > 1.36
the AT phase should be stable already at the ground state
(cf figure 4), as well as the prediction that for σ ∗ = 1.39
the stable phase at low temperatures should be the floating
incommensurate phase of triangular order. The results shown
in figure 19 demonstrate that a gradual increase of σ ∗ from 1.34

Figure 18. The stability regions of different phases for the systems
characterized by σ ∗ = 1.34, the corrugation parameter Vb = 1.0 and
different values of ε∗

gs plotted against the surface potential
curvature kx .

to 1.38 leads to an increase of the bond-orientational order
parameter �6 in the phase resulting from the disordering
of the AT phase. This partially ordered phase undergoes a
continuous phase transition to a liquid-like disordered phase
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Figure 19. The plots of the bond-orientational order parameters ψ4 (left panel) and �6 (right panel) for a series of systems characterized by
ε∗

gs = 1.0, Vb = 1.0 and different σ ∗ (shown in the figure).

upon a further increase of temperature. This transition belongs
to the universality class of the two-dimensional Ising model, as
already demonstrated for the systems with σ ∗ = 1.27.

For the atoms of σ ∗ = 1.45 the adatom–adatom
interaction becomes already weakly repulsive when the film
is ordered into a perfect c(2 × 2) commensurate structure,
but becomes attractive upon the displacement of adatoms
leading to the formation of AT phase. Of course, the
displacement of adatoms from the registry positions is always
accompanied by a decrease of the adatom–surface interaction
energy. Nevertheless, in the case of systems with sufficiently
low curvatures of the surface potential the displacement of
adatoms may favor the formation of AT phase rather than
the floating incommensurate phase of triangular ordering. Of
course, when the size of adatoms becomes large enough the
monolayer film of the density corresponding to a perfect
commensurate c(2×2) phase becomes unstable and the system
relaxes to a more stable state, in which a certain fraction of
atoms are transferred to the second layer. Such promotion
of the second layer has been observed for the system with
σ ∗ = 1.47 and even with rather strong surface potential,
characterized by ε∗

gs = 3.0 and Vb = 1.0. Despite a high
potential barrier between adjacent sites (V ∗

D ≈ 3.09) the
resulting structure has a well developed triangular symmetry
(see figure 20). Also the atoms promoted to the second layer
form a cluster of triangular ordering.

5. Summary and conclusions

In this work we have discussed the mechanism leading to
the development of Archimedean tiling of the type (32.4.3.4)
in monolayer films formed by Lennard-Jones atoms on
surfaces of square symmetry. Ground state calculations have
demonstrated that Archimedean tiling may exist already at
T = 0. Finite temperature Monte Carlo simulation results
have been found to be in a good agreement with the predictions
stemming from the ground state calculations. It has been
shown that the stability of AT structure strongly depends on
the curvatures of the holding potential.

Figure 20. The snapshot of the configuration for the system with
σ ∗ = 1.47, ε∗

gs = 3.0, Vb = 1.0, recorded at T ∗ = 0.03 and L = 20.
The atoms in the first (second) layer are shown as filled (open)
circles).

Moreover, we have obtained rather convincing evidence
that the melting of hexagonally ordered floating incommensu-
rate phase formed on the substrate of square symmetry occurs
via two phase transitions, in agreement with the predictions
stemming from the theory of Nelson and Halperin. The
first transition does not affect the hexagonal ordering of
the film much. However, our results have demonstrated
that this transition is accompanied by a well developed heat
capacity anomaly, not predicted to occur for the system
undergoing defect mediated melting. The second transition
has been demonstrated to be continuous and belonging to the
universality class of the two-dimensional Ising model, just as
predicted by Nelson and Halperin.

Concluding, we should mention the question of a possible
development of AT ordering in bilayer films. In general,
attempts to obtain bilayer films with AT structure in either
the top or in both layers were not successful. Of course,
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the presence of the second layer stabilizes the commensurate
structure in the layer adjacent to the solid substrate, as already
discussed in one of our previous papers [15]. It was also
demonstrated that for the system of σ ∗ = 1.34, εgs = 1.0
and Vb = 1.0, the second layer assumes the structure in which
commensurate domains are separated by highly localized walls
running along the diagonal of the surface lattice symmetry
axes. Quite similar structures have been observed for systems
of still larger atoms of σ ∗ between 1.35 and 1.38. Our
conclusion is that the AT ordering is not likely to appear in
bilayer as well as in thicker films due to enhanced stability of
the commensurate phase in layers adjacent to the solid surface
and a fast decay of the corrugation potential with the distance
from the surface.
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